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In Chapter 5, we found the area under a curve by using rectangles that got infinitely thinner – essentially lines perpendicular to the x-axis. We did this by integrating the function.

If we rotate a curve, or two curves, around an axis we get a three-dimensional solid.

Slice the solid with a plane perpendicular to the axis. Where the solid and the plane intersect is called a cross-sectional area.

To find the volume of a solid of rotation, we first need to find the formula for the cross-sectional area, and then integrate it over the interval.

Recall that the area of a circle is given by 
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Disk Method

At any given point on the rotated curve, the cross-sectional area is a disk with f(x) or f(y) representing the radius. The area of the disk is:
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The formulas for a solid of rotation using a single curve are:
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Washer Method

With two curves, we need to subtract the inner area from the outer area, which creates a washer.

The formulas for a solid of rotation using two curves are:
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where:

f(x) or f(y) is the outer curve

g(x) or g(y) is the inner curve
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