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Newton’s Method for Approximating Roots

Start with a curve 
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, and select some point 
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 on the curve. 
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 represents our first approximation of a root of the function.

The slope of the tangent line through the point is given by 
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2. 
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The tangent line crosses the x-axis at a point 
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. Plugging this point in for 
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 in Equation 2 above gives us:

3. 
[image: image9.wmf])

)(

(

'

)

(

0

1

2

1

1

x

x

x

f

x

f

-

=

-


Solving for 
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 gives us:
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, where 
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 is our second approximation for the root of our equation.

By replacing 
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 with 
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 in Equation 4, we get 
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 – our third approximation.

We can continue the process for as long as we need. Normally, we would stop when two successive approximations are identical to a given number of decimal places.

Generalizing the Process

	1. 
	The general formula for the nth approximation is given by 
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	2. 
	Evaluate the first derivative of the function, and then plug it and the original function into the general formula.



	3. 
	For 
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 to represent the first approximation.

If the function can be expressed as 
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, then find the intersection points.



	4. 
	Plug the nth approximation into the formula from Step 2 to get the next approximation.



	5. 
	Repeat Step 4 for 
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, and incrementing n by 1, until 
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, where k represents the number of approximations to be made.
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