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Derivative of Logarithmic Functions

Primarily, this is a matter of memorization:
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This simplifies when the base is e:
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If we take a look at the graph of natural logarithmic function, we can see that the slope of the tangent line, as x approaches 0, is undefined.

When we discussed the Power Rule, we mentioned a restriction that the exponent on the x term could not be zero. If we were to follow the Power Rule strictly with the exponent equal to zero, we would have:
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So, what we have is a special case. The only way to reach 
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 through a derivative is by taking the derivative of 
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Logarithmic Differentiation

In functions dealing with exponents, it is often easier to take the natural log of both sides, and then take the derivative and solve for dy/dx. 

The reason this is easier is because a function can be separated into terms using the Laws of Logarithms.

Example: 
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 (Page 249, #35)

Determining e
Given 
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, we can apply the definition of the derivative from Section 2.8:
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Given 
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, we know that 
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. If we evaluate when a=1 and h=x. The result is:
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Changing from logarithmic form to exponential form, we have:


[image: image12.wmf]x

x

x

e

/

1

0

1

)

1

(

lim

+

=

®


Setting 
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, and knowing that 
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, we can change the form of the previous function to:
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This should be familiar from the formulas for compound interest.
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