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Reversing the Chain Rule

Recall our steps for the Chain Rule:

1. Take the derivative of the outside function, leaving the inside function alone.

2. Multiply by the derivative of the inside function.

To reverse the process:

1. Find the integral of the outside function, leaving the inside function alone.

2. Divide by the derivative of the inside function.

Integration by Substitution

Recognizing and integrating the outside and inside functions can be difficult.

In Algebra, we learned how to solve equations in quadratic form using u-substitution:
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	Original function.
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	Factor.
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	Solve for u.
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	Re-substitute.
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	Solve for x.


Integration by Substitution (cont)

It is often necessary to do a u-substitution in order to evaluate an integral. The trick to these is being able to identify one part of a function as the derivative of another part.
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	Original function.

	2. 
	
[image: image12.wmf]ò

+

xdx

x

2

1

2

.
	Re-writing.
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	Substituting.
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	Integrating.
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	Re-substituting.


Identifying the derivative is not always so obvious.
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	Original function.
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	Re-writing.
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Solve the second one for what we have:
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	Substituting.
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	Integrating.
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	Re-substituting.
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